MATLAB function which performs a ROC curve of two-class data.
软件应用简介

This function calculates the Receiver Operating Characteristic curve, which represents the 1-specificity and sensitivity of two classes of data, (i.e., class_1 and class_2).
The function also returns all the needed quantitative parameters: threshold position, distance to the optimum point, sensitivity, specificity, accuracy, area under curve (AROC), positive and negative predicted values (PPV, NPV), false negative and positive rates (FNR, FPR), false discovery rate (FDR), false omission rate (FOR), F1 score, Matthews correlation coefficient (MCC), Informedness (BM) and Markedness; as well as the number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).
Example of use:
class_1 = 0.5*randn(100,1);
class_2 = 0.5+0.5*randn(100,1);
roc_curve(class_1, class_2);
界面展示

结果示意

规格 价
0元试用 |
---|
0.0元人民币/月 |
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!