函数将普通幂级数转换为加权伯努利多项式的幂级数,反之亦然。
软件应用简介

Forward: Function input c is the ordinary coefficient vector, real-valued . Function output d is the Bernoulli coefficient vector, real-valued. Use row vectors.
d = bernoulli_power_series(c)
Inverse: Function output c is the ordinary coefficient vector, real-valued . Function input d is the Bernoulli coefficient vector, real-valued. Use row vectors.
c = inverse_bernoulli_power_series(d)
Thorough theory can be found here. Methodology relies on definition of Bernoulli polynomials via inverted Dirichlet series.
https://qr.ae/pNvLNt
Quick explanation
Define an ordinary power series, where c_k | k=0,1,2… denotes the ordinary coefficient vector
y(x) = c_0 + xc_1 + x^2c_2…
Define a Bernoulli power series , where d_k | k=0,1,2… denotes the Bernoulli coefficient vector
y(x) = B_0(x)d_0 + B_1(x)d_1 + B_2(x)d_2…
Forward transform:
Function input is the finite ordinary coefficient vector c_k | k=0,1,2…K and function output is equal-length Bernoulli coefficient vector d_k | k=0,1,2…K
Inverse transform:
Function output is the finite ordinary coefficient vector c_k | k=0,1,2…K and function input is equal-length Bernoulli coefficient vector d_k | k=0,1,2…K
界面展示

结果示意

规格 价
0元试用 |
---|
0.0元人民币/月 |
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!