Computes an integral “I” via Simpson’s rule in the interval [a,b] with n+1 equally spaced points
软件应用简介

This function computes the integral “I” via Simpson’s rule in the interval [a,b] with n+1 equally spaced points
Syntax: I = simpsons(f,a,b,n)
Where,
f= can either be an anonymous function (e.g. f=@(x) sin(x)) or a vector containing equally spaced values of the function to be integrated
a= Initial point of interval
b= Last point of interval
n= # of sub-intervals (panels), must be integer
Written by Juan Camilo Medina – The University of Notre Dame
09/2010 (copyright Dr. Simpson)
Example 1:
Suppose you want to integrate a function f(x) in the interval [-1,1].
You also want 3 integration points (2 panels) evenly distributed through the
domain (you can select more point for better accuracy).
Thus:
f=@(x) ((x-1).*x./2).*((x-1).*x./2);
I=simpsons(f,-1,1,2)
Example 2:
Suppose you want to integrate a function f(x) in the interval [-1,1].
You know some values of the function f(x) between the given interval,
those are fi= {1,0.518,0.230,0.078,0.014,0,0.006,0.014,0.014,0.006,0}
Thus:
fi= [1 0.518 0.230 0.078 0.014 0 0.006 0.014 0.014 0.006 0];
I=simpsons(fi,-1,1,[])
note that there is no need to provide the number of intervals (panels) “n”,
since they are implicitly specified by the number of elements in the vector fi
界面展示

结果示意

规格 价
0元试用 |
---|
0.0元人民币/月 |
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!