Shear Force and Bending Moment Diagram for simply supported beam软件

This Matlab code can be used for finding Support reaction, Maximum Bending Moment, SFD and BMD

软件应用简介

Shear Force and Bending Moment Diagram for simply supported beam软件

% This Matlab code can be used for simply supported beam with single point 

% load or uniformly distributed to find the 

% * Support reaction 

% * Maximum Bending Moment 

% * Shear force diagram 

% * Bending Moment daigram 

clc; clear; close all 

disp(‘Simply Supported Beam’);

% Data input section 

disp(‘ ‘); 

L = input(‘Length of beam in meter = ‘); 

disp(‘ ‘);disp(‘Type 1 for point load, Type 2 for udl’) 

Type = input(‘Load case = ‘);

if Type == 1 

disp(‘ ‘); 

W = input(‘Load applied in kN = ‘); 

disp(‘ ‘); 

a = input(‘Location of Load from left end of the beam in meter = ‘); 

c = L-a;

R1 = W*(L-a)/L; % Left Support Reaction. 

R2 = W*a/L; % Right Support Reaction.

else 

disp(‘ ‘); 

W = input(‘Uniformly distributed load in kN/m = ‘); 

disp(‘ ‘); 

b = input(‘Length of udl in meter = ‘); 

disp(‘ ‘); 

cg = input(‘C.G of udl from left end of the beam in meter = ‘); 

a = (cg-b/2); 

c = L-a-b; 



R1 = W*b*(b+2*c)/(2*L); % Left Support Reaction. 

R2 = W*b*(b+2*a)/(2*L); % Right Support Reaction. 

end 



% Discretization of x axis. 

n = 1000; % Number of discretization of x axis. 

delta_x = L/n; % Increment for discretization of x axis. 

x = (0:delta_x:L)’; % Generate column array for x-axis.

V = zeros(size(x, 1), 1); % Shear force function of x. 

M = zeros(size(x, 1), 1); % Bending moment function of x.

% Data processing section 

if Type == 1 

for ii = 1:n+1 

% First portion of the beam, 0 < x < b 

V(ii) = R1; 

M(ii) = R1*x(ii); 



% Second portion of the beam, b < x < L 

if x(ii) >= a 

V(ii) = R1-W; 

M(ii) = R1*x(ii)-W*(x(ii)-a); 

end 

end 

x1 = a; 

Mmax = W*a*(L-a)/L; 

else 

for ii = 1:n+1 

% First portion of the beam, 0 < x < a 

if x(ii) < a 

V(ii) = R1; 

M(ii) = R1*x(ii); 

elseif a <= x(ii) && x(ii)< a+b 

% Second portion of the beam, a < x < a+b 

V(ii) = R1-W*(x(ii)-a); 

M(ii) = R1*x(ii)-W*((x(ii)-a)^2)/2; 

elseif x(ii) >= (a+b) 

% Second portion of the beam, a+b < x < L 

V(ii) = -R2; 

M(ii) = R2*(L-x(ii)); 

end 

end 

x1 = a+b*(b+2*c)/(2*L); 

Mmax = W*b*(b+2*c)*(4*a*L+2*b*c+b^2)/(8*L^2); 

end

disp(‘ ‘);disp ([‘Left support Reaction’ ‘ = ‘ num2str(R1) ‘ ‘ ‘kN’]) 

disp(‘ ‘);disp ([‘Left support Reaction’ ‘ = ‘ num2str(R2) ‘ ‘ ‘kN’]) 

disp(‘ ‘);disp ([‘Maximum bending moment’ ‘ = ‘ num2str(Mmax) ‘ ‘ ‘kNm’])

figure 

subplot(2,1,1); 

plot(x, V, ‘r’,’linewidth’,1.5); % Grafica de las fuerzas cortantes. 

grid 

line([x(1) x(end)],[0 0],’Color’,’k’); 

line([0 0],[0 V(1)],’Color’,’r’,’linewidth’,1.5); 

line([x(end) x(end)],[0 V(end)],’Color’,’r’,’linewidth’,1.5); 

title(‘Shear Force Diagram’,’fontsize’,16) 

text(a/2,V(1),num2str(V(1)),’HorizontalAlignment’,’center’,’FontWeight’,’bold’,’fontsize’,16) 

text((L-c/2),V(end),num2str(V(end)),’HorizontalAlignment’,’center’,’FontWeight’,’bold’,’fontsize’,16) 

axis off

subplot(2,1,2); 

plot(x, M, ‘r’,’linewidth’,1.5); % Grafica de momentos flectores; 

grid 

line([x(1) x(end)],[0 0],’Color’,’k’); 

line([x1 x1],[0 Mmax],’LineStyle’,’–‘,’Color’,’b’); 

title(‘Bending Moment Diagram’,’fontsize’,16) 

text(x1+1/L,Mmax/2,num2str(roundn(Mmax,-2)),’HorizontalAlignment’,’center’,’FontWeight’,’bold’,’fontsize’,16) 

text(x1,0,[num2str(roundn(x1,-2)) ‘ m’],’HorizontalAlignment’,’center’,’FontWeight’,’bold’,’fontsize’,16) 

axis off

界面展示

Shear Force and Bending Moment Diagram for simply supported beam软件

结果示意

Shear Force and Bending Moment Diagram for simply supported beam软件

规格 价

0元试用
0.0元人民币/月

声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2022年6月26日
下一篇 2022年6月26日

相关推荐